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Some notations

The ring of integers modulo g is represented by the integers
Zq=1{0,1,...,q9 —1}.
For integers g > 0 and a, (a mod g) denotes the main residue of a modulo
g, that is, the least non-negative integer r such that g divides a — r.
For a,b € Z, and x € Z, we denote addition, subtraction, and
multiplication by

@ a® b= ((a+ b) mod q)

@ ao b= ((a— b) mod q)

@ x ® b= (xbmod q)
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Limited errors

We consider the following channel:
Our alphabet is Zj.

Let A and u be integers, where 0 < u < A < g — p.
Let [—p, Al ={—p,—p+1,...,A =1 A} and
[—p, A" ={—p,—p+1,....,—1}U{1,2,..., A},

An element a € Z, may be changed into a @ x, where x € [—pu, A].
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Example

Suppose that ¢ =9, Z, = {0,1,2,3,4,5,6,7,8}.
Let £« =1 and A = 2. Then

element | can be changes to
8,0,1,2
0,1,2,3
1,2,3,4
2,3,4,5
3,4,5,6
4.5.6,7
5,6,7,8
6,7,8,0
7,8,0,1

O

O NO 1 & WD B
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Codes: packings and coverings

The (A, pu)-quasi-cross with center a in Zg is the set

n
X(a) — U{(317327”°7ai—173i @Xiaai—l-la' °°7an) |Xi < [—N,A]}
i=1

We see that | X(a)| =14 n(\+ u).
A code of length nis a set C C Zg.

The code is a (A, u)-packing (or single error correcting code) if the
quasi-crosses X(a) where a € C are disjoint.

The code is a (A, p)-covering if |, X(a) = Zg.
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T
Example of (2, 1)-packing of length 2 in Z3

A "sphere” is a quasi-cross with arms of lengths 1 and 2.

A code, i.e. (2,1)-packing, C C Z3 can correct single errors if all the
quasi-crosses corresponding to codewords are disjoint.

Example. Codewords=(3,8),(4,4):

O

@)
@)
@)

O O O OO0 0O O0o0O0
O O OO OO O0O0
o O
@)
O O O
o O O

@ O O

O O OO OO0 O0O0
O O O

O O O O

O O O O

O O OO OO0 0O
O O OO OO0 OO0 O0
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Example continued

A possible code of size 8 in Z3 is

{(0,0),(2,2),(4,4),(6,6),(1,6),(6,1),(3,8),(8,3)}.
This has maximal size for (2, 1)-packings of Z3 (checked by exhaustive

search).

O—T—O—O o 0
%o ooioo
O®0O0 @O0 @O0
o O e
0 0 00

O ® O

0

! .

._

O

45t

o O
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We see that for g = 2, a (1,0)-code is an ordinary binary code.

More general, a (g — 1,0) is an ordinary g-ary code.
From now on, we consider A < g — 1.

Construction of packing and covering codes for these channels have
been studied over many years. Most results are for the cases where
we have some limitation on the parameters, in particular 4 = 0 (an
asymmetric channel) and ;1 = A (a symmetric channel).

The case 0 < u < A has only been studied the last 5-6 years.

MMC, September 7, 2017 8 / 59

Torleiv Klgve Codes for errors of limited magnitude




-
Content of the talk

In this talk | will describe some of the these codes. They are mainly
@ linear codes for u < A.
@ linear codes for n = 2.

@ non-linear codes for n = 2.
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A general situation:

Let g be a positive integer.
Let G be a finite Abelian group such that

gg =0 forall geG.

A (—p, \)-splitter set S = {s1,s>,...5,} of G is a subset of G such that

all /s, where ¢ € [—pu, A\]* and s € S, are distinct and non-zero elements of
G.

For v € G, let

C, = {(Xl,XQ,...,Xn) GZZ ’ X151 + X250 + -+ + X5, = V}.

This is a code that can correct a single error.

Ref: (Varshamov and Tenengoltz 1965), (Stein 1984), (Ahlswede et al.
2004), (Schwartz 2012).
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A
Bl—u, Al(q) sets.

(—u, A)-splitter sets in Z, are also called B[—u, A](q) sets. A number of
constructions of such sets are known, in particular for 4 = 0 and for u = A.

Constructions for all i and A (Yari, Klgve, Bose 2013): Let L = u+ A + 1.

Construction

Lleta>1 m>1,and g= Lm.

For each r € [0,a — 1], let k, be the largest integer less than or equal to \
that divides L™ m.

Let C be a B[—u, A|(m) set. Then

r

a—1
L
B — U{La—l—f(uﬂ) 0<i<— —1} U{l%c|ceC)
r=>0

Ky

is a B[—u, A|(L?m) set.
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Construction

Let p > A\ be an odd prime and g a primitive root modulo p. If a is a
divisor of p — 1 and

{indy(£) (mod a) | €€ [~u A"} = ji+ A,

then

{g‘””' (modp)OSigpgl—l}

is a B[—pu, \](p) set.

Here, indg(¢) is the index (or discrete logarithm),

gm) = ¢ (mod p).
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Construction

Let 4 = X (mod 2). Let p be a prime such that p=1 (mod L — 1) and
let g be a primitive root modulo p. Let

0 = gcd{indg(¢) | ¢ € [—p, A\]"}.

If p=1 (mod (L —1)) and

{indg(z) (mod L — 1) ‘f e [—p. A]*} =[0,L—2],

then

i e {0, 95__11) —1},je [0,9—1]}

{ge(L—1)i+j (mod p)

is a perfect B[—u, A|(p) set.
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-
On the condition

p is a prime and

{indg(ﬁ) (mod )\‘FM)VE [—Ma)‘]*} :[O,)\—I—,u—l]a

where
0 = ged{indg(¢) | £ € [—p, A]*}.

If 4w = X (mod 2), we conjecture that there are infinitely many primes
satisfying the condition.

For £ =1 and A = 3, the smallest such prime is p =5 and there are ten
such primes < 797.

For £ =1 and A = 5, the smallest such prime is p = 7 and there are ten
such primes < 5407.

For £ =1 and A =7, the smallest such prime is p = 475729 and there are
ten such primes < 3127441.
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-
On the condition

p is a prime and

{indg(ﬁ) (mod )\‘FM)VE [—Ma)‘]*} :[O,)\—I—,u—l]a

where

0 = ged{indg(¢) | £ € [—p, A]*}.

If 4w = X (mod 2), we conjecture that there are infinitely many primes
satisfying the condition.

For =2 and A = 4, the smallest such prime is p = 7 and there are ten

such primes < 1087.
For £ =2 and A = 6, the smallest such prime is p = 315361 and there are

ten such primes < 1207441.
For =2 and A = 8, the smallest such prime is p = 11 and there are ten

such primes < 183691.
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Construction

Let By be a B[—u, A\|(q1) set and By be a B[—pu, A\](q2) set.
If gcd(Al, g2) = 1, then

{c+rqgi|ceBi,rel0,qo0— 1} U{qic| c e By}

is a B[—u, Al(q1g2) set.
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T
Codes of length 2

We first consider linear codes.

In this case, a B[—pu, A](q) set is a set {a, b} such that all
(x® a) @ (y ® b) where x,y € [—u, A]* are distinct.

We start by defining the codes and the problem precisely.
Let (a, b) € ZZ where a # b. The corresponding code is

C:Ca,b:{(u,v)EZf,\(u®a)@(v®b)=0}.

When (u,v) € C,p is transmitted and (v, v') is received, the
corresponding syndrom is (v’ ® a) @ (v ® b).
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T
Check pairs

Let (u,v) € C,p. We see that if (v, v') = (u & e, v), the syndrom is
(tde)®a)d(vrb)=(u®Ra)P(e®a) P (v b)=e® a.

Similarly, if (¢/,v') = (u, v & e), the syndrom is e ® b. Therefore, the code
Is single error correcting if and only if the 1 + 2\ 4+ 21 syndroms

OYU{e®alec|[—u -1JULANYU{e®b]|ec [—u —1]U[L ]}

are all distinct. If this is the case, we say that (a, b) is a (g, A\, ) check pair
or just a check pair if the values of g, A and u are clear from the context.
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Problems considered

A problem can now be precisely formulated as follows:

For which q, \ and 1 does a (q, A, 1) check pair exist?

For given A and i, let
qL(\, ) be the smallest q for which a (g, \, 1) check pair exists,
gm(A, i) be minimal such that a (q, A, 1) check pair exists for all

q=>qm.

A simpler problem is the following: determine (or give bounds on) q; (A, i)
and gu (A, p1)-

MMC, September 7, 2017 19 / 59
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Values of q; (1, \)

wlA=1 2 3 4 5 6 7 8 9 10 11 12 13
0 3 5 7 9 11 13 15 17 19 21 23 25 27
1 5 8 14 16 22 24 30 32 38 40 46 48 54
2 10 15 21 30 33 39 48 51 57 66 69 75
3 17 24 34 40 52 56 68 72 84 88 100
4 26 35 45 55 65 80 85 95 105 115
5 37 48 62 75 88 96 114 120 138
6 50 63 77 91 105 119 133 154
7 65 80 98 112 132 144 166
3 82 09 117 138 153 171
9 101 120 142 160 184
10 122 143 165 187
11 145 168 194
12 170 195
13 197
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-
p=20

Theorem
gr(X,0) = gu(A,0) =2X + 1. J

Proof:
If (a,b) is a (g, A,0) check pair, then the 2\ syndroms

{{ai mod g,bi mod q|1l<i<A\}

are distinct and non-zero, and so g > 2\ + 1.

If g >2X+1, then (1,9 — 1) is a (g, A,0) check pair;
the syndroms are

{0,1,....0,g— XN\, g—A+1,....9—1}
and g — A > .
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g; In the general case

In Klgve, Luo, Yari (2012) it was shown that

Theorem
For all A > 1 we have q;(\,\) = (A +1)? +1. J

Conjecture

i) For all \ and pn we have
A+ =M= <aAp) <A+1)°2=(A—p)’+pu+1.

ii) We have q (A, 1) = (A + 1) — (X — p)?
for A\ = p+ 1 and for A = 2 (and many others).
i) For A\ =2+ 1, we have qp(A\, ) = (A +1)2 — (A —p)? +p+ 1.
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gm In the general case

We observe that gp (A, 1) < gu(A, p+1).
In particular gpm(A, 1) < gu(, ).

We now consider gp(A, A). We observe that
am(AA) > gr(MA) = (A +1)7 4 1.

This presentation is based on Klgve (2015).
We split the presentation into two cases:

Case |, g > (A+1)2+1, g # (A +1)(\+2). For this case we show that
there exists a simple check pair.

Case Il, g = (A + 1)(A+ 2). This is the hardest case. A check pair exists
for some )\, but not all.
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A
Thecase g > (A +1)°+1, g# (A +1)(A+2)

We will give explicit check pairs for all g in this case.
First, consider the pair (1, A\ + 1). The corresponding syndrom set is

0, [ U[g— X q—1JU{x(A+1) [ x € [L,A}U{g—x(A+1)]x € [1,\]}.

If g — A(A+1) > XA+ 1), thatis, g > 2A(A+ 1) + 1, then clearly all the
syndroms are distinct and so (1, A + 1) is a check pair.

Similarly, if g € [A+ 1) +1,2A\(A+1) — 1] but g # 0 (mod X + 1), then
again all the syndroms are distinct.

It remains to consider g € {x(A+ 1) | x € [\ + 3,2\]}. For these q,

g # 0 mod (A + 2). By an argument similar to the one above, we see that
that (1, A\ 4+ 2) is a check pair.
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A
Thecase g > (A +1)°+1, g # (A + 1)(\ + 2), summary

We summarize these results in a theorem.

Theorem

Let g > (A+1)24+1, g#(N+1)(\+2).
@ Ifg>2\A+1)+1, then (1, \+ 1) is a check pair.

o Ifge|[(A+1)2+1,2X\(A+1) —1] but g #0 (mod X + 1), then
(1, A+ 1) is a check pair.

o Ifge{x(A+1)|xe[N+3,2)\]}, then (1, \ + 2) is a check pair.

y

Corollary
au(AA) =AM+ 1) +1orguA\A) = (A+1)(A+2) + 1. J
MMC, September 7, 2017 25 / 59




i —
g=(A+1)(A+2), A+ 1 not a prime power

Theorem

If \4+1=0p wherel < o < p, and gcd(o, p) =1, then (o, p(A + 2 — 7))
IS a check pair.

g

The corresponding code is

C={(u,v)|u,vel0,g—1],0u® p(A+2—0)v =0}
={(pU,cV) | U€[0,0(A+2)—1],V € [0, p(N+2) — 1],
U—-—0ocV =0 (mod\+2)}.
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Some numerical results and a conjecture

For 2 < A <100 and g = (A + 1)(A + 2), a complete search has shown
that there are no check pairs when A 4+ 1 a prime power.

Possibly this is the case for all A and we formulate this conjecture:
Conjecture

o If A+ 1 is a prime power, then qp(\, A) = (A +1)(A+2)+ 1.
o If\+1 is not a prime power, then qn(\,\) = (A +1)% + 1.
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Nonlinear codes?

When A +1 > 2 is a prime power and g = (A + 1)(A + 2), is there a code
C € Zg of size g and correcting any single error of size at most \?
We conjectured above that no linear such code exists.

How about a non-linear code?

A non-linear code corresponds to a set of disjoint crosses with arms of
length .
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A code for A\ =y =2 and g =12

©) o O ©)
o O ©) ©)
©) @) ©)

- O ©) ©)
O ©) ©)
O ©) ©)
O ©) o @&

O ©) O

This code has size 11 (a linear code would have size 12).
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A code for A= =2 and g = 12, more

Ioobo 0 O
O ® 0 O
O O 0
0 O @® O
O ® O 0
e
e
0O K e,
O ® O e
0 O O
E OO ® 0 O
00 ®O0 @O0 oo

j=0j=1j=2j=3

OO0 @
® 0O

The structure of the code is

10 +3,4i+j) |1 =10,2],j =[0,3]} \ {(11,11)}
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A
Similar codes for any A = g and g = (A + 1)(A + 2)

0+ A1), (A+2)i+)) [ =[0,AL; =[0,A+1]}\ (g -1,9 1)}

Note: we get (9 —1,g— 1) fori= X+ 1and j= A\
This code has g — 1 codewords.

Is there a code with g codewords?
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I
A code for A\=pu =3 and g =20

The general construction above gives a code with 19 codewords.

However, there is a code with 20 codewords
(Battaglioni, Chiaraluce, Klgve 2017):

{(2i,4i mod 20) | i € [0,9]} U {(2i, (4i + 10) mod 20) | i € [0,9]}.
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T
A code of size 20 for A= =3 and g = 20

O ® O
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Similar codes for larger odd \?

If A =2m — 1, the distance between closest codewords in the same row is
5m. We have g = (A +1)(A+2) =2m(2m + 1).

We get a code if 5m|2m(2m + 1), that is m = 2 mod 5, that is

A = 3 mod 10.

Since A\+1 =4 mod 10, A + 1 is even.
Hence, A + 1 is a power of a prime if and only if A 4+ 1 is a power of 2.
We see that for A = 2**T2 — 1 we get get a code of size (A + 1)(\ + 2).
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A code of size 12 for A=y =2 and g = 12

(Battaglioni, Chiaraluce, Klgve 2017):

Ioobo Ioobo
e oo% O ® OO
oo
OO @O OO0 ® O
e O ® OO O ® O
@
-
O ® O OO0 ®O0 0
O ® OO O ® OO
i—o-o o—ei—o—o oo

The structure of the code is

{(6i +3j + k,j+ 4k) | i €[0,1],j € [0,1], k € [0,2]}
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Maximal packings

General question: Given A, u and g, let Q(\, i, g) be the maximal size of
a (A, pu)-packing (error correcting code) of Zg, linear or non-linear.

What can we say about Q(\, i, q)7?
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e
Open questions for g = (A + 1)(\ + 2)

We showed above that

QAN A+1D)A+2) > (A +1)(A+2) -1

for all )\,
and that

QAN A+1D)(A+2) > (A+1)(A+2)
sometimes.
For which A is QA A, (A+1)(A+2)) > (A+1)(A+2)7
Is QA (A +1)(A+2)) > (A+1)(A+2) for any A?
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A
Known cases for g = (A + 1)(\ 4+ 2)

We have shown that
QAN A+L)(A+2)) = (A+1)(A+2)

for
o A\=1,23,4.
@ )\ odd, except possibly A =27 — 1 where 5 % 2 mod 4.
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A
NEW RESULT 5. SEPTEMBER 2017

Let g = (A4 1)(A + 2) where A = 2v is even.
Let C be defined by

C={QiA+1)+j,j(A+2)|0<i<y,0<j<A}
U{Ri+DA+1)i+j,j(A+2)+1]0<i<r,0<j< AL

Then C is a (A, \)-packing of ZZ of size (A 4+ 1)(A + 2).

Remaining open case:
A =27 —1 where 5 # 2 mod 4
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]
Codes for t =0, A >1and g > A

A solution is

(@A+1)j+140) | iel0,g—1],j€[0,[(q/(2A +1)] —1]}.

Example, g = 11, A = 1. Size of solution is 3-11 = 33.

Ofoocoojooo
O OoooooolB®
Booloooooo
O OjQoojjoooolB

Boocoooooo
Ol oo ooooo
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]
Codes for £ =0, A > 1, more

(Battaglioni, Chiaraluce, Klgve 2017):
Assume that A >1and g=r(2A+1) —n, where r > 1and 1 <n < \.
For 0 < j<r—1let
Ti={(i,i+jm) i€l Ar(A+1)=1—n—j(A+1)]}
T ={(y,x) | (x,y) € Tj}.
Then
r—1
J 7
j=—(r-1)

are a set of centers of a packing of Zg.
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T
Example for g = 11, A = 1. Size is 37.

O OCffjoojjJoojoo
BBooojfJoojooo
[] coojjooojjoool®
[] Ofoojoooofo
[] BocoBoooPoo
[] coojjoooooolB®
[] OJoooooPo
Boooooooo
[] ool oc o ool °oB
Ofoocjoojjo oo
BooPBooPoopPo
[] L] []
L] L]
[]
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A
A best (A, \)-packing of Z?

{(A+1)m—n,m+ (N+1)n) | m,n € Z} is known to be a (A, \)-packing
of Z? of maximal density (Everett and Hickerson 1979).

Its density s
1

A2 4+ 2N+ 2°
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A
A best (4, 4)-packing of Z*
{(5m —n,m+5n) | mnecZ}

O O
O O
Bo
O O

O O O
O O O

O O O O

o ool |

o ® @ O

o O O O

O O O O

B O O O

O O O O

o

o

o o

o O

O O

O O O o

O O O O O offj o o O
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For g = (A + 1)(A 4 2) = A2 4 3\ + 2 this implies for a (\, \)- packing of
size Q(A, A, g) that

QA NG 1
(A2 4+3X+2)2 7 A2 +2\+2

and so
A2+ 3\ + 2)2 A2 2\ + 2+ \)?
Q(M,q)g( A2 (AN H2AF24 )
A2+ 2N+ 2 A2+ 2N+ 2
)\2
— A2 2N 242\ .
teAt et +)\2+2)\+2
Hence

QAN Q) < N2 +4N+2422 =g+ A
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T
A best (A, p1)-packing of Z2 for 1 < A

Let 0 < o < A
Then (Cruz, d'Azevedo Breda, Pinto 2015)

{(uAN+1) = v A= p),v(A+1) —u(A—p)) |u,v e Z}

is a (A, it)-packing of Z? of maximal density.

Its density is
1

G+ 12— (A= p)?
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e
Packing of Z?

Let C be a (A, u)-packing of Z?, of maximal size Q(\, u, q).
Let
C*={(a+rg,b+sq)|(a,b) e C,r,s € Z}.

Then C* is a (), p)-packing of Z? with density Q(\, 11, q)/q°.

Corollary
If w < A, then ;
QA 1, q) < d .
(A+1)2 = (A —p)?
e
XA ) < A2 42N+ 2
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* + %k 4+ %k + k + % 4+ k + k 4+ k + k + x4+ *x + %

= ¥ = = £ LA
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A
On the linear codes for the case g # (A + 1)(\ + 2)

We take a closer look at the codes corresponding to the second case
(ge[(A+1)>+1,2k(A+1) —1] but g Z0 (mod A+ 1)). The code is

Cl,)\+1 = {((—()\ + 1)) X Vv, V) | vV & Zq}.

The most natural encoding is:
encode the information m € Z, into ((—(A+ 1)) ® m, m)).
This gives a systematic code.
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Possible syndroms

For decoding, we assume that (u’, V') is received and that at most one of
the elements are in error, and by an amount at most A. From this we want
to recover the sent information. We look at the possible syndroms.

@ If there are no errors, the syndrom is 0.

o If v/ = u® e where e € [1, )], then the syndrom is s = e. In this case
m=v'

o If ' = u® e where e € [\, —1], then the syndrom is s = g + e.
Also in this case m = v/,

o If v = v @ e where e €[1, )], then the syndrom is s = (A + 1)e. In
this case m=v' & (—s/(A+1)).

o If v/ = v @ e where e € [\, —1], then the syndrom is
s=qg+(A+1)e. Inthiscase m=v' & ((s—q)/(A+1)).

MMC, September 7, 2017 50 / 59

Torleiv Klgve Codes for errors of limited magnitude




e
Decoding algorithm

This gives the following decoding algorithm:

o ifse[0,\]orse[g— A, qg—1], m=V,

@ else if (s mod (A+1)) =0, then m=Vv' & (—s/(\+ 1)),

@ elseif ((g—s) mod (A+1))=0,then m=v' @& ((s—q)/(A+1)).
This gives a correct answer for all errors of the type we consider.
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On the linear codes for g = (A +1)(A+2), A+ 1 not a
prime power

Theorem

If \+1=0p where 1l < o < p, and gcd(o, p) =1, then (o, p(A + 2 — 7))
IS a check pair.

w

The corresponding code is

C={(u,v)|u,vel0,g—1],0u® p(A+2—0)v =0}
={(pU,oV) | Ue€[0,0(A+2)—1],V € [0, p(N+2) — 1],
U—-—ocV =0 (mod\+2)}.
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e
Example, A\=5,0=2, p=3, g =42

C={@3U,2V)|Ue]0,13],V €]0,20],U —2V =0 (mod 7)}.

U v | (3U,2V)
0,7 | 0,7,14 | (0, 14), (0,28), (0, 0), (21,14), (21, 28), (21, 0)
1,8 | 4,11,18 | (3,8),(3,22), (3, 36), (24,8), (24,22), (24, 36)
2,9 | 1,8,15 | (6,2),(6,16), (6,30), (27,2), (27, 16), (27, 30)
3,10 | 5,12,19 | (9, 10), (9, 24), (9, 38), (30, 10), (30, 24), (30, 38)
4,11 | 2,11,18 | (12,4), (12,22),(12,36),  (33,4),(33,22), (33, 36)
5,12 | 6,13,20 | (15,12), (15, 26), (15,40), (36,12),(36,26), (36, 40)
6,13 | 3,10,17 | (18,6), (18,20), (18,34),  (39,6), (39, 20), (39, 34)

Note that |C| =42 = q. Also in general, |C| = q.
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e
Encoding

The encoding can be done as follows: any integer m € [0, g — 1] can be
represented as
m = ou + v where v € [0,0 — 1].

We encode m into (u,v) = (p(—p +v(A+2)) mod q,opu).
The information can easily be recovered from (u,v). Let

V=v/oand U= (u/p+V)/(A+2) mod 0.

Then m=v + U.
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Syndroms

We next consider the correction of errors for a codeword (pU, V).

o If v/ = u+ e where e € [0, \], then the syndrom is s = ge and so

e =s/p.
o If ' =u+ e where e € [\, —1], then s = g+ ge and so
e =(s—q)/p.

o If vV =v+e wheree e[\ —1JUJ[L, A], then s=p(A+2—0)e
(mod po(A+2))andsos/p=(A+2—0)e (mod o(A+2)). We see
that gcd(A +2 — 0,0(A+2)) = 1. Hence

e=f=0M\+2-0)"1 mod (¢(\+2)),

where the inverse is modulo o(A +2). If f < k, then e =f. If
f>oc(A+2)— )\ thene=0c(A+2)—f.
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Decoding algorithm

From this, we get the following decoding algorithm.
@ If s=0 (mod o) and s/o € [0, A], then decode into (u & (s/0), v),
@ elseif s=0 (mod o) and s/o € [p(A+2) — A\, p(A + 2) — 1], then
decode into (u& ((s — q) /o), v),
@ else if s =0 (mod p), let

f=((A+2- 0)_12 mod o (A +2)),

» if f < A, then decode into (u,v & f),
> else decode into (u,(ve (f —o(A+2)) mod q)).
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Thank you for your attention.

Codes for errors of limited magnitude MMC, September 7, 2017 59 / 59



